HMM Speaker Identification Using Linear and Non-linear Merging Techniques
نویسندگان
چکیده
Speaker identification is a powerful, non-invasive and inexpensive biometric technique. The recognition accuracy, however, deteriorates when noise levels affect a specific band of frequency. In this paper, we present a sub-band based speaker identification that intends to improve the live testing performance. Each frequency sub-band is processed and classified independently. We also compare the linear and non-linear merging techniques for the sub-bands recognizer. Support vector machines and Gaussian Mixture models are the non-linear merging techniques that are investigated. Results showed that the sub-band based method used with linear merging techniques enormously improved the performance of the speaker identification over the performance of wide-band recognizers when tested live. A live testing improvement of 9.78% was achieved.
منابع مشابه
HMM Sub-band Based Speaker Identification Using Linear and Non-linear Merging Techniques
Speaker identification is a powerful, non-invasive and inexpensive biometric technique. The recognition accuracy however deteriorates when noise levels only affect a specific band of frequency. In this paper we present a sub-band based speaker identification that intends to improve the live-testing performance. Each frequency sub-band is processed and classified independently. We also compare t...
متن کاملTarget setting in the process of merging and restructuring of decision-making units using multiple objective linear programming
This paper presents a novel approach to achieving the goals of data envelopment analysis in the process of reconstruction and integration of decision-making units by using multiple objective linear programming. In this regard, first, we review inverse data envelopment analysis models for data reconstruction and integration. We present a model with multi-objective linear programming structure in...
متن کاملSpeaker adaptation for HMM-based speech synthesis system using MLLR
This paper describes a voice characteristics conversion technique for an HMM-based text-to-speech synthesis system. The system uses phoneme HMMs as the speech synthesis units, and voice characteristics conversion is achieved by changing HMM parameters appropriately. To transform the voice characteristics of synthetic speech to the target speaker, we apply an MLLR (Maximum Likelihood Linear Regr...
متن کاملAcoustic-to-articulatory inversion using a speaker-normalized HMM-based speech production model
Acoustic-to-articulatory inverse mapping is a difficult problem because of its non-linear and oneto-many characteristics. We have previously developed a speech inversion method using a hidden Markov model (HMM)-based speech production model which takes into account the phonemespecific dynamic constraints of articulatory parameters. We found that the constraint significantly decreases the estima...
متن کاملAnalysis on Mel Frequency Cepstral Coefficients and Linear Predictive Cepstral Coefficients as Feature Extraction on Automatic Accents Identification
Automatic Accents Identification is very important for discussion especially within scope of speaker recognition. Some contribution of appropriate techniques uses in Music Recognition and Accent Identification may contributes in improving the recognition rate. Techniques in discussing on music genre identification or accents automatic identification and the combination of both processes still i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0705.1585 شماره
صفحات -
تاریخ انتشار 2007